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Abstract

These notes, which contain the content of a talk given by the author at the ILLC in Ams-
terdam on the above date, outline some selected topics in constructive set theory. Following [1],
we present two axiomatizations of constructive set theory: ECST and CZF. For the first topic,
we give two constructions of the reals and discuss when they are equivalent. We next move to
well-founded relations, defining ordinals and proving some simple facts about induction. For the
last topic, we analyze several choice principles and their interconnections, finishing with some
principles that ought to be avoided.
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1 Axioms

We first recall the axiom systems ECST and CZF, as presented in [1]. Both use intuitionistic
logic.

1.1 ECST

Extensionality ∀a∀b[∀x(x ∈ a↔ x ∈ b) → a = b]

Pairing ∀a∀b∃y∀u[u ∈ y ↔ y = a ∨ y = b]

Union ∀a∃y∀x[x ∈ y ↔ ∃u ∈ a(w ∈ u)]

Strong Infinity ∃a[Ind(a) ∧ ∀b[Ind(b) → ∀x ∈ a(x ∈ b)]]

∆0-Separation ∀a∃y∀x[x ∈ y ↔ x ∈ a ∧ ϕ(x)]
for all ϕ(x) ∈ ∆0

Replacement ∀x ∈ a∃!yϕ(x, y) → ∃b∀y[y ∈ b↔ ∃x ∈ aϕ(x, y)]
for all formulas ϕ(x, y) without b free

Note that Strong Infinity relies on the following abbreviations:

Empty(y) :≡ (∀z ∈ y)⊥
Succ(x, y) :≡ ∀z[z ∈ y ↔ z ∈ x ∨ z = x]

Ind(a) :≡ (∃y ∈ a)Empty(y) ∧ (∀x ∈ a)(∃y ∈ a)Succ(x, y)
where ≡ denotes syntactic equality.

1.2 CZF

Extensionality ∀a∀b[∀x(x ∈ a↔ x ∈ b) → a = b]

Pairing ∀a∀b∃y∀u[u ∈ y ↔ y = a ∨ y = b]

Union ∀a∃y∀x[x ∈ y ↔ ∃u ∈ a(w ∈ u)]

Strong Infinity ∃a[Ind(a) ∧ ∀b[Ind(b) → ∀x ∈ a(x ∈ b)]]

Set Induction ∀a[∀x ∈ aϕ(x) → ϕ(a)] → ∀aϕ(a)

∆0-Separation ∀a∃y∀x[x ∈ y ↔ x ∈ a ∧ ϕ(x)]
for all ϕ(x) ∈ ∆0

Strong Collectoin ∀x ∈ a∃yϕ(x, y) → ∃b[∀x ∈ a∃y ∈ bϕ(x, y) ∧ ∀y ∈ b∃x ∈ aϕ(x, y)]
for all formulas ϕ(x, y)

Subset Collection ∃c∀u[∀x ∈ a∃y ∈ bψ(x, y, u)
→ ∃d ∈ c(∀x ∈ a∃y ∈ dψ(x, y, u) ∧ ∀y ∈ d∃x ∈ aψ(x, y, u))]

for all formulas ψ(x, y, u)

2 Continuum

In this section, assuming that the natural numbers N and the rationals Q have been constructed, we
present two constructions of the continuum. The first mimics the classical approach of Dedekind
cuts, while the second uses Cauchy sequences for a more traditionally constructive flavor. The
section finishes with some statements on the relation between these two notions of reals.
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2.1 Dedekind reals

The classical Dedekind reals are obtained by taking proper, nonempty subsets X of rationals such
that r ∈ X ⇔ (∃s ∈ X)[r < s]: the so-called Dedekind cuts. To obtain the analogous structure in
constructive set theory, though, an additional requirement is needed.

Definition 2.1.1. A cut is a proper, nonempty X ⊂ Q such that

X = X< := {r ∈ Q : (∃s ∈ X)r < s}

and for all r, r′ ∈ Q,
r < r′ ⇒ [r ∈ X ∨ r′ 6∈ X].

With this we can define our fist notion of the constructive reals.

Definition 2.1.2. The Constructive Dedekind reals R is the class of all left cuts. We define the
relation < on R by X < Y if there is a rational in Y \X.

2.2 Cauchy reals

The traditional approach to constructive reals defines them as equivalence classes of certain se-
quences of rationals. Here we taking a slightly different approach, instead relating the sequences
to the previously defined Dedekind cuts.

Definition 2.2.1. A regular sequence x = {xn}n>0 is a sequence of rationals such that

|xn − xm| ≤
1
n

+
1
m

for all m,n > 0. The class of all regular sequences is denoted Rc.

The mentioned equivalence relation of the traditional approach is defined by

x ∼ y ⇐⇒ |xn − yn| ≤
2
n

for all n > 0.

We, however, will associate to each regular sequence x a cut Xx by

Xx := {r ∈ Q : (∃s > r)(∃n > 0)(∀m ≥ n)s ≤ xm}.

Proposition 2.2.2. For all x, y ∈ Rc,

(i) Xx ∈ R

(ii) Xx = Xy iff x ∼ y.

Definition 2.2.3. The Cauchy reals make up the class Rc = {Xx : x ∈ Rc}.

The following proposition and its corollary show the relationship between our two constructions of
the continuum.

Proposition 2.2.4. Let X ∈ R. Then X ∈ Rc iff X is countably infinite.

Corollary 2.2.5. (ECST)

(i) Rc is a subfield of R.
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(ii) Assuming ACω, Rc = R.

Depending on which axioms we are working with, either structure of reals may be a proper class.
The following reveals when the continuum is a set.

Theorem 2.2.6. (ECST)

(i) If NN is a set, then so is Rc.

(ii) Assuming Subset Collection, R is a set.

Corollary 2.2.7. (CZF) Rc and R are sets.

3 Foundations

The two standard, and classically equivalent, conditions for a relation <A to be a well-founded
relation on a set A are:

(i) Every nonempty subset of A has a <A-least element.

(ii) There is no infinite descending <A sequence.

In constructive set theory, however, the first is too strong, while the second too weak. Since the
importance of well-founded relations is that they allow for proofs by induction and definitions
by recursion, we define them directly with this purpose in mind. We then see that the desired
properties hold.

3.1 Well-founded relations

We first define our constructive notion of well-foundedness.

Definition 3.1.1. A subset X ⊆ A is <A-inductive if

∀u ∈ A[(∀v ∈ A)(v <A u→ v ∈ X) → u ∈ X].

<A is well-founded if each <A-inductive subset of A equals A.

Lemma 3.1.2. (ECST) If <A is a well-founded relation on a set A, then there is no infinite
descending <A-sequence.

Proof (sketch). Suppose, toward contradiction, that there is a function f : N → N such that
f(n + 1) < f(n) for all n. Then B := A\f [N] is inductive, and so B = A. But f(0) 6∈ B, a
contradiction.

3.2 Induction and recursion

The scheme of ∆0-induction on ω,

ϕ(0) ∧ ∀n ∈ ω[ϕ(n) → ϕ(n+ 1)] → (∀n ∈ ω)ϕ(n)

where ϕ(x) ∈ ∆0, is provable in ECST. We show here that by assuming Set Induction, we get
induction on ω for arbitrary formulas ϕ(x).

Lemma 3.2.1. ECST + Set induction ` INDω.
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Proof. Assume ϕ(0)∧∀n ∈ ω[ϕ(n) → ϕ(n+1)]. We define θ(x) :≡ x ∈ ω → ϕ(x) in order to apply
Set Induction. So suppose ∀x ∈ aθ(x). In order to show θ(a), let a ∈ ω. Then a = 0 or a = n+ 1
(see [1, Chapter 5] for facts about the natural numbers). If the former, then ϕ(a), and so θ(a). If
the latter, then n ∈ a implies θ(n), and so ϕ(n). This gives ϕ(n+ 1), by our original assumption,
which gives θ(a). So ∀a[∀x ∈ aθ(x) → θ(a)], and so, by Set Induction, ∀aθ(a), which is what we
want: ∀n ∈ ωϕ(n).

Another essential tool in set theory that requires Set Induction is definition by recursion.

Theorem 3.2.2. (ECST + Set Induction) If G is a total (n+ 2)-ary class function, i.e.

∀x̄yz∃!uG(x̄, y, z) = u,

then there is a total (n+ 1)-ary class function F such that

∀x̄y[F (x̄, y) = G(x̄, y, F �y)].

Proof (sketch). Let

Φ(f, x̄) :≡ [f is a function] ∧ [dom(f) is transitive] ∧ [∀y ∈ dom(f)(f(y) = G(x̄, y, f � y))]

and
ψ(x̄, y, f) :≡ [Φ(f, x̄) ∧ y ∈ dom(f)].

Then ∀x̄y∃!fψ(x̄, y, f) by Set Induction on y. We can then define

F (x̄, y) = w :≡ ∃f [ψ(x̄, y, f) ∧ f(y) = w].

3.3 Ordinals

With defintion by recursion in hand, we can move on to ordinals.

Definition 3.3.1. An ordinal is a transitive set of transitive sets.

Lemma 3.3.2. For a set x, let x+ 1 = x ∪ {x}.

(i) α+ 1 ∈ ON.

(ii) If X is a set of ordinals, then
⋃
X ∈ ON.

The proof of the following is essentially the same as that of Theorem 3.2.2.

Proposition 3.3.3. (ECST + Set Induction) If G is a total (n+ 2)-ary class function on V n ×
ON× V , i.e.

∀x̄αz∃!uG(x̄, α, z) = u,

then there is an (n+ 1)-ary class function F : V n ×ON → V such that

∀x̄α[F (x̄, α) = G(x̄, α, F �α)].

Using Theorem 3.2.2, we can make the following definition.

Definition 3.3.4. (ECST + Set Induction) For any set x, rank(x) :=
⋃
{rank(y) + 1 : y ∈ x}.
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Proposition 3.3.5. (ECST + Set Induction)

(i) ∀x rank(x) ∈ ON.

(ii) ∀α rank(α) = α.

Proof (sketch). (i) is proved by Set Induction on x and uses Lemma 3.3.2. (ii) uses induction on
α.

The linearity of the ordinals, which we will look at in §5.2, cannot be proved by our axioms. If
we were to force this by requiring that

∀β ∈ α∀γ ∈ α(β ∈ γ ∨ β = γ ∨ γ ∈ β)

for all ordinals α, then Lemma 3.3.2 and Proposition 3.3.5 would fail.

4 Choice

In this section we discuss some principles of choice. We first show that the Axiom of Choice is
constructively unacceptable. We then state some constructive choice principles and their intercon-
nections.

First, we define two other principles that will be involved. Restricted Excluded Middle, REM,
is the schema ϕ∨¬ϕ for all ϕ ∈ ∆0. EM is the same but for all formulas ϕ. Exponentiation states
that for any sets a and b, the class ab of all functions from a to b is a set.

4.1 AC

Proposition 4.1.1. ECST + Exponentiation + REM ` Powerset.

Proof. Let u ⊆ 1. By REM, 0 ∈ u ∨ 0 6∈ u. So u = 1 ∨ u = 0, giving u ∈ 2. Thus P(1) ⊆ 2. Then
P(1) = {u ∈ 2 : u ⊆ 1} is a set by ∆0-Separation.

Now let a be any set, and define b := a(P(1)), which is a set by Exponentiation. Then

c := {{x ∈ a : g(x) = 1} : g ∈ b}

is a set by Replacement. Note that if y ∈ c then y ⊆ a. But also, if y ⊆ a, then

y = {x ∈ a : χy(x) = 1}

(where χy(x) := {w ∈ 1 : x ∈ y} is an element of b), and so y ∈ c. Thus P(a) = {y ∈ c : y ⊆ a} = c
is a set.

In fact, the strength of ECST + Exponentiation + REM exceeds that of classical type theory
with extensionality.

The Axiom of Choice, AC, states that for all sets A and functions F with domain A, if

∀i ∈ A∃y ∈ F (i),

then there is a function f with domain A such that

∀i ∈ Af(i) ∈ F (i).
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Proposition 4.1.2.

(i) ECST + Exponentiation + Separation + AC = ZFC.

(ii) ECST + AC ` REM.

(iii) ECST + Exponentiation + AC ` Powerset.

Proof. (i) Let ϕ be any formula. Define

X = {n ∈ ω : n = 0 ∨ [n = 1 ∧ ϕ]},

Y = {n ∈ ω : n = 1 ∨ [n = 0 ∧ ϕ]},

which are sets by full Separation. We have ∀z ∈ {X,Y }∃k ∈ ω(k ∈ z). By AC, we get a
choice function f on {X,Y } such that

∀z ∈ {X,Y }[f(z) ∈ ω ∧ f(z) ∈ z].

So f(X) ∈ X and f(Y ) ∈ Y . Since ∀m,n ∈ ω(n = m ∨ n 6= m),

f(X) = f(Y ) ∨ f(X) 6= f(Y ).

If f(X) = f(Y ), then ϕ, by the definitions of X and Y . If f(X) 6= f(Y ), then X 6= Y , and
so ¬ϕ. Thus ϕ ∨ ¬ϕ. So, assuming AC and Separation, we got EM. This, together with

ECST + Exponentiation + EM = ZF,

proves (i).

(ii) If ϕ ∈ ∆0, then X and Y are sets by ∆0-Separation. The rest of the previous proof gives
REM.

(iii) This follows from (ii) and Proposition 4.1.1.

4.2 Constructive Choice Principles

Now that we have seen some unwelcomed consequences of full AC, we look at several weaker
versions.

The Axiom of Countable Choice, ACω, states that if F is a function with domain ω such that

∀i ∈ ω∃y ∈ F (i),

then there is a function f with domain ω such that

∀i ∈ ωf(i) ∈ F (i).

The Dependent Choices Axiom, DC, states that if a is a set and R ⊆ a× a such that

(∀x ∈ a)(∃y ∈ a)xRy

and b0 ∈ a, then there is a function f : ω → a such that f(0) = b0 and

(∀n ∈ ω)f(n)Rf(n+ 1).
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The Relativized Dependent Choices Axiom, RDC, states that for any formulas ϕ and ψ, if

∀x[ϕ(x) → ∃y(ϕ(y) ∧ ψ(x, y))]

and ϕ(b0), then there is a function f with domain ω such that f(0) = b0 and

(∀n ∈ ω)[ϕ(f(n)) ∧ ψ(f(n), f(n+ 1))].

The Bounded Relativized Dependent Choices Axiom, bRDC, states that for any ∆0-formulas
ϕ and ψ, if

∀x ∈ a[ϕ(x) → ∃y ∈ a(ϕ(y) ∧ ψ(x, y))]

and b0 ∈ a ∧ ϕ(b0), then there is a function f : ω → a such that f(0) = b0 and

(∀n ∈ ω)[ϕ(f(n)) ∧ ψ(f(n), f(n+ 1))].

Proposition 4.2.1. (ECST) RDC =⇒ bRDC ⇐⇒ DC =⇒ ACω.

Proof. That bRDC and RDC imply DC is trivial. That DC implies bRDC relies on a result
we’ve omitted. So we just prove that DC implies ACω.

If z = 〈x, y〉, let 1st(z) := x and 2nd(z) := y.
Let F be a function with domain ω such that ∀i ∈ ω∃x ∈ F (i). Define

A := {〈i, u〉 : i ∈ ω ∧ u ∈ F (i)}

(which is a set by Union, Cartesian Product, and ∆0-Separation) and

R := {〈x, y〉 ∈ A×A : 1st(x) + 1 = 1st(y)},

and let a0 = 〈0, x0〉 for some x0 ∈ F (0). Then ∀x ∈ A∃y ∈ A(xRy), so, by DC, there is a function
g : ω → A such that g(0) = a0 and

∀i ∈ ω[1st(g(i+ 1)) = 1st(g(i)) + 1].

Defining a function f on ω by f(i) := 2nd(g(i)), we get ∀i ∈ ωf(i) ∈ F (i).

5 Principles to avoid

In this section we look at two major principles which are true in ZF: The Foundation Schema/Axiom
and the Linearity of Ordinals. It is shown that these are too powerful for constructive set theory.

5.1 Foundation

The Foundation Shema is
∃xϕ(x) → ∃x[ϕ(x) ∧ ∀y ∈ x¬ϕ(y)]

for all formulas ϕ. The Foundation Axiom is

∀x[∃y(y ∈ x) → ∃y(y ∈ x ∧ ∀z ∈ y(z 6∈ z))].

Proposition 5.1.1.

(i) CZF + Foundation Schema = ZF.
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(ii) CZF + Separation + Foundation Axiom = ZF.

(iii) CZF + Foundation Axiom ` REM.

(iv) CZF + Foundation Axiom ` Powerset.

Proof. (i) Let ϕ be any formula. We show ϕ ∨ ¬ϕ. Let Sϕ := {x ∈ ω : x = 1 ∨ [x = 0 ∧ ϕ]}.
(Note that Sϕ need not be a set.) 1 ∈ Sϕ. By the Foundation Schema, there is an xo ∈ Sϕ

such that ∀y ∈ x0y 6∈ Sϕ. Then, by the definition of Sϕ, x0 = 1∨ [x0 = 0∧ϕ]. If x0 = 1, then
0 6∈ Sϕ, so ¬ϕ. If x0 = 0 ∧ ϕ, then ϕ. So EM holds.

(ii) Assuming Separation, Sϕ is a set. Then the previous proof goes through with only the
Foundation Axiom.

(iii) If ϕ ∈ ∆0, then Sϕ is a set by ∆0-separation. So the proof of (ii) gives REM.

(iv) By (iii) and the fact that CZF proves Exponentiation, Powerset follows from Proposition
4.1.1.

In fact, the strength of CZF + Foundation Axiom exceeds that of classical type theory with
extensionality.

5.2 Linearity

At the end of §3, we noted that requiring ordinals to be linear has negative, though minor, conse-
quences. Here we show that the consequences are worse than foreshadowed. Linearity of Ordinals
states that

∀αβ ∈ ON[α ∈ β ∨ α = β ∨ β ∈ α].

Proposition 5.2.1.

(i) CZF + Linearity of Ordinals ` Powerset.

(ii) CZF + Linearity of Ordinals ` REM.

(iii) CZF + Linearity of Ordinals + Separation = ZF.

Proof. (i) 1 and 2 are ordinals. If u ⊆ 1, then ∀z ∈ u(z = 0), so u is an ordinal. By linearity of
ordinals,

∀u ⊆ 1[u ∈ 2 ∨ u = 2 ∨ 2 ∈ u].

The last two disjuncts cannot be true, so ∀u ⊆ 1[u ∈ 2]. Thus P(1) = {u ∈ 2 : u ⊆ 1} is a
set. From here, just as in the proof of Proposition 4.1.1, we get Powerset.

(ii) Let ϕ ∈ ∆0. Then α := {n ∈ ω : n = 0 ∧ ϕ} is a set by ∆0-Separation, and in fact an ordinal
since it’s a subset of 1. So, by Linearity of Ordinals, α ∈ 1 ∨ α = 1 ∨ 1 ∈ α. If α ∈ 1, then
α = 0, giving ¬ϕ. If α = 1, then ϕ. (And 1 6∈ α.) Therefore, ϕ ∨ ¬ϕ, giving REM.

(iii) If ϕ is any formula, then α := {n ∈ ω : n = 0 ∧ ϕ} is a set by Separation. Then the previous
proof gives ϕ ∨ ¬ϕ, giving EM.
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